22 research outputs found

    Parallel three-dimensional simulations of quasi-static elastoplastic solids

    Get PDF
    Hypo-elastoplasticity is a flexible framework for modeling the mechanics of many hard materials under small elastic deformation and large plastic deformation. Under typical loading rates, most laboratory tests of these materials happen in the quasi-static limit, but there are few existing numerical methods tailor-made for this physical regime. In this work, we extend to three dimensions a recent projection method for simulating quasi-static hypo-elastoplastic materials. The method is based on a mathematical correspondence to the incompressible Navier-Stokes equations, where the projection method of Chorin (1968) is an established numerical technique. We develop and utilize a three-dimensional parallel geometric multigrid solver employed to solve a linear system for the quasi-static projection. Our method is tested through simulation of three-dimensional shear band nucleation and growth, a precursor to failure in many materials. As an example system, we employ a physical model of a bulk metallic glass based on the shear transformation zone theory, but the method can be applied to any elastoplasticity model. We consider several examples of three-dimensional shear banding, and examine shear band formation in physically realistic materials with heterogeneous initial conditions under both simple shear deformation and boundary conditions inspired by friction welding.Comment: Final version. Accepted for publication in Computer Physics Communication

    A continuous-time analysis of distributed stochastic gradient

    Full text link
    We analyze the effect of synchronization on distributed stochastic gradient algorithms. By exploiting an analogy with dynamical models of biological quorum sensing -- where synchronization between agents is induced through communication with a common signal -- we quantify how synchronization can significantly reduce the magnitude of the noise felt by the individual distributed agents and by their spatial mean. This noise reduction is in turn associated with a reduction in the smoothing of the loss function imposed by the stochastic gradient approximation. Through simulations on model non-convex objectives, we demonstrate that coupling can stabilize higher noise levels and improve convergence. We provide a convergence analysis for strongly convex functions by deriving a bound on the expected deviation of the spatial mean of the agents from the global minimizer for an algorithm based on quorum sensing, the same algorithm with momentum, and the Elastic Averaging SGD (EASGD) algorithm. We discuss extensions to new algorithms which allow each agent to broadcast its current measure of success and shape the collective computation accordingly. We supplement our theoretical analysis with numerical experiments on convolutional neural networks trained on the CIFAR-10 dataset, where we note a surprising regularizing property of EASGD even when applied to the non-distributed case. This observation suggests alternative second-order in-time algorithms for non-distributed optimization that are competitive with momentum methods.Comment: 9/14/19 : Final version, accepted for publication in Neural Computation. 4/7/19 : Significant edits: addition of simulations, deep network results, and revisions throughout. 12/28/18: Initial submissio

    Deep learning probability flows and entropy production rates in active matter

    Full text link
    Active matter systems, from self-propelled colloids to motile bacteria, are characterized by the conversion of free energy into useful work at the microscopic scale. These systems generically involve physics beyond the reach of equilibrium statistical mechanics, and a persistent challenge has been to understand the nature of their nonequilibrium states. The entropy production rate and the magnitude of the steady-state probability current provide quantitative ways to do so by measuring the breakdown of time-reversal symmetry and the strength of nonequilibrium transport of measure. Yet, their efficient computation has remained elusive, as they depend on the system's unknown and high-dimensional probability density. Here, building upon recent advances in generative modeling, we develop a deep learning framework that estimates the score of this density. We show that the score, together with the microscopic equations of motion, gives direct access to the entropy production rate, the probability current, and their decomposition into local contributions from individual particles, spatial regions, and degrees of freedom. To represent the score, we introduce a novel, spatially-local transformer-based network architecture that learns high-order interactions between particles while respecting their underlying permutation symmetry. We demonstrate the broad utility and scalability of the method by applying it to several high-dimensional systems of interacting active particles undergoing motility-induced phase separation (MIPS). We show that a single instance of our network trained on a system of 4096 particles at one packing fraction can generalize to other regions of the phase diagram, including systems with as many as 32768 particles. We use this observation to quantify the spatial structure of the departure from equilibrium in MIPS as a function of the number of particles and the packing fraction

    Implicit regularization and momentum algorithms in nonlinear adaptive control and prediction

    Full text link
    Stable concurrent learning and control of dynamical systems is the subject of adaptive control. Despite being an established field with many practical applications and a rich theory, much of the development in adaptive control for nonlinear systems revolves around a few key algorithms. By exploiting strong connections between classical adaptive nonlinear control techniques and recent progress in optimization and machine learning, we show that there exists considerable untapped potential in algorithm development for both adaptive nonlinear control and adaptive dynamics prediction. We first introduce first-order adaptation laws inspired by natural gradient descent and mirror descent. We prove that when there are multiple dynamics consistent with the data, these non-Euclidean adaptation laws implicitly regularize the learned model. Local geometry imposed during learning thus may be used to select parameter vectors - out of the many that will achieve perfect tracking or prediction - for desired properties such as sparsity. We apply this result to regularized dynamics predictor and observer design, and as concrete examples consider Hamiltonian systems, Lagrangian systems, and recurrent neural networks. We subsequently develop a variational formalism based on the Bregman Lagrangian to define adaptation laws with momentum applicable to linearly parameterized systems and to nonlinearly parameterized systems satisfying monotonicity or convexity requirements. We show that the Euler Lagrange equations for the Bregman Lagrangian lead to natural gradient and mirror descent-like adaptation laws with momentum, and we recover their first-order analogues in the infinite friction limit. We illustrate our analyses with simulations demonstrating our theoretical results.Comment: v6: cosmetic adjustments to figures 4, 5, and 6. v5: final version, accepted for publication in Neural Computation. v4: significant updates, revamped section on dynamics prediction and exploiting structure. v3: new general theorems and extensions to dynamic prediction. 37 pages, 3 figures. v2: significant updates; submission read

    Stochastic Interpolants: A Unifying Framework for Flows and Diffusions

    Full text link
    A class of generative models that unifies flow-based and diffusion-based methods is introduced. These models extend the framework proposed in Albergo & Vanden-Eijnden (2023), enabling the use of a broad class of continuous-time stochastic processes called `stochastic interpolants' to bridge any two arbitrary probability density functions exactly in finite time. These interpolants are built by combining data from the two prescribed densities with an additional latent variable that shapes the bridge in a flexible way. The time-dependent probability density function of the stochastic interpolant is shown to satisfy a first-order transport equation as well as a family of forward and backward Fokker-Planck equations with tunable diffusion. Upon consideration of the time evolution of an individual sample, this viewpoint immediately leads to both deterministic and stochastic generative models based on probability flow equations or stochastic differential equations with an adjustable level of noise. The drift coefficients entering these models are time-dependent velocity fields characterized as the unique minimizers of simple quadratic objective functions, one of which is a new objective for the score of the interpolant density. Remarkably, we show that minimization of these quadratic objectives leads to control of the likelihood for any of our generative models built upon stochastic dynamics. By contrast, we establish that generative models based upon a deterministic dynamics must, in addition, control the Fisher divergence between the target and the model. We also construct estimators for the likelihood and the cross-entropy of interpolant-based generative models, discuss connections with other stochastic bridges, and demonstrate that such models recover the Schr\"odinger bridge between the two target densities when explicitly optimizing over the interpolant

    Manifold learning for coarse-graining atomistic simulations: Application to amorphous solids

    Full text link
    We introduce a generalized machine learning framework to probabilistically parameterize upper-scale models in the form of nonlinear PDEs consistent with a continuum theory, based on coarse-grained atomistic simulation data of mechanical deformation and flow processes. The proposed framework utilizes a hypothesized coarse-graining methodology with manifold learning and surrogate-based optimization techniques. Coarse-grained high-dimensional data describing quantities of interest of the multiscale models are projected onto a nonlinear manifold whose geometric and topological structure is exploited for measuring behavioral discrepancies in the form of manifold distances. A surrogate model is constructed using Gaussian process regression to identify a mapping between stochastic parameters and distances. Derivative-free optimization is employed to adaptively identify a unique set of parameters of the upper-scale model capable of rapidly reproducing the system's behavior while maintaining consistency with coarse-grained atomic-level simulations. The proposed method is applied to learn the parameters of the shear transformation zone (STZ) theory of plasticity that describes plastic deformation in amorphous solids as well as coarse-graining parameters needed to translate between atomistic and continuum representations. We show that the methodology is able to successfully link coarse-grained microscale simulations to macroscale observables and achieve a high-level of parity between the models across scales.Comment: 34 pages, 12 figures, references added, Section 4 added, Section 2.1 update
    corecore